+7 (846) 274-02-02
Есть вопросы? Мы ответим!

icq 432184390 432184390
E-mail: plasma@megamir.ru
Телефон: (846) 274-02-20
задать вопрос с сайта


Наши предложения Оформить заказ О компании Статьи Контакты

Схема процесса ионно-плазменного напыления

Генерация плазменного потока в вакууме

При поджиге вакуумной дуги на торцевой поверхности катода возникают сначала быстро перемещающиеся катодные пятна первого типа, которые через время порядка 1 - 0,5 мс переходят в медленно перемещающиеся катодные пятна второго типа. Из катодных пятен второго типа эродирует материал катода, состоящий из ионной, паровой и микрокапельной фазы. Продукты эрозии разлетаются практически изотропно над поверхностью катода, а из-за перемещения катодного пятна и наличия до 10 катодных пятен одновременно на поверхности эти продукты эрозии образуют плазменную струю, уходящую от поверхности катода. Система магнитных и электрических полей дополнительно перерабатывает продукты эрозии, увеличивая долю ионной фазы и кинетическую энергию ионов, а также коллимирует плазменную струю. На выходе генератора состав плазменной струи оценивается следующими значениями: доля ионной фазы – 30-95%, паровой фазы – 5-65%, микрокапельной фазы – 20-0,5%. Кинетическая энергия ионов достигает сотен электрон-вольт.

Поскольку такие параметры как доля ионной фазы, средняя кинетическая энергия на ион, средняя степень ионизации ионов являются основными физическими параметрами, определяющими свойства покрытий и технологические режимы их получения, а также из-за того, что даже в одинаковых по схеме ускорителях эти параметры могут существенно изменяться, необходимо при запуске новых установок в работу проводить определение этих параметров.

Закономерности осаждения частиц напыляемого материала на подложку

Плазменная струя, выйдя со среза сопла генератора в свободномолекулярном режиме, проходит вакуумную камеру, взаимодействует с поверхностями конденсации и образует покрытие. На деталь через технологические приспособления подается отрицательное напряжение, получившее название опорного напряжения в режиме напыления и высокого напряжения в режиме ионной очистки поверхности. Ионы плазмы под действием напряжения смещения ускоряются в дебаевском слое около поверхности, обычно нейтрализуются и, ударяясь о поверхность, передают свою кинетическую энергию поверхности около точки соударения. В зависимости от абсолютной величины кинетической энергии ионов на поверхности протекают различные процессы. При энергиях меньше 10 эВ эти процессы имеют в основном термическую природу, при энергиях больше 10 эВ начинают сказываться процессы с нетермической природой, при энергиях выше пороговой энергии распыления начинаются процессы ионного травления поверхности, при энергиях, превышающих критическую энергию внедрения, ионы начинают внедряться в кристаллическую решетку, при энергиях выше энергии смещения атомов кристаллической решетки в твердом теле возникают каскады смещения, характерные для ионной имплантации. При этом активно протекают процессы: образования активных центров роста покрытия, выбивание с поверхности атомов, не попавших в минимумы потенциальной энергии, ускоренная поверхностная диффузия, нетермическая диссоциация адсорбированных соединений, разрывы полярных цепочек, нагрев поверхности и т.д.

Для получения соединений используют реактивные газы. Так при использовании титанового катода и газового азота можно получать нитрид титана. Причем, при увеличении опорного напряжения количество неметалла (азота), вступающего в реакцию нитридообразования, возрастает, и при некотором критическом значении образуется нитрид стехиометрического состава. Образование такого соединения происходит в результате диссоциативной хемосорбции азота. Качество покрытия определяется качеством процесса ионной очистки детали и зависит от технологических параметров тока дуги, потенциала смещения, давления газа, температуры детали и во многом зависит от конструкции генератора плазмы, особенностей детали и технологической оснастки, а также от химической чистоты используемых материалов.

Возможность плавного регулирования в заданных пределах кинетической энергии конденсирующихся частиц является принципиальным отличием данной технологии от всех других технологий нанесения покрытий, обеспечивая тем самым все основные ее преимущества.

 
© МегаМир, 2009-2011 г.
идея и проект - группа компаний МегаМир®
разработка сайта, реклама в интернет - МегаМир®
Наши предложения |Оформить заказ |О компании |Статьи |Контакты МегаМир ® :: технологии застра сегодня ®